Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,6,6-Trimethyl-6,7,8,9-tetrahydrophenanthro[1,2-*b*]furan-10,11-dione

Xin-Qiao Liu* and Wen-Yuan Gao

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China Correspondence e-mail: liuxin_qiao@hotmail.com

Received 23 April 2007; accepted 30 April 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.057; wR factor = 0.139; data-to-parameter ratio = 10.1.

The title compound, $C_{19}H_{18}O_3$, also known as tanshinone IIA, contains a four-ring system. The crystal packing involves $\pi-\pi$ stacking interactions of 3.279 Å and $C-H\cdots O$ hydrogen bonds. The molecule lies on a crystallographic mirror plane, which involves disorder of the cyclohexene ring across this plane.

Related literature

For related literature, see: Chang et al. (1991); Ryu et al. (1997); Xue et al. (1999).

Experimental

Crystal data

 $\begin{array}{l} C_{19} H_{18} O_3 \\ M_r = 294.33 \\ Orthorhombic, Pmna \\ a = 6.5579 \ (11) \ \text{\AA} \\ b = 9.1687 \ (15) \ \text{\AA} \\ c = 24.328 \ (4) \ \text{\AA} \end{array}$

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick,1996) $T_{min} = 0.968, T_{max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.139$ S = 1.171404 reflections 139 parameters $V = 1462.8 \text{ (4) } \text{\AA}^3$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 113 (2) K $0.24 \times 0.20 \times 0.10 \text{ mm}$

10602 measured reflections 1404 independent reflections 1343 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.22 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.22 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2283).

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chang, H. M., Chui, K. Y., Tan, F. W. L., Yang, Y., Zhong, Z. P., Lee, C. M., Sham, H. L. & Wang, H. N. C. (1991). J. Med. Chem. 34, 1675–1692.

Ryu, S. Y., Lee, C. O. & Choi, A. U. (1997). Planta Med. 63, 339-342.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Xue, M., Cui, Y., Wang, H. Q., Hu, H. Y. & Zhang, B. (1999). J. Pharm. Biomed. Anal. 21, 207–213. supplementary materials

Acta Cryst. (2007). E63, o2831 [doi:10.1107/S1600536807021320]

1,6,6-Trimethyl-6,7,8,9-tetrahydrophenanthro[1,2-b]furan-10,11-dione

X.-Q. Liu and W.-Y. Gao

Comment

Tanshinone IIA is one of the major active constitutes isolated from the traditional Chinese medicinal herb, Salvia miltiorrhiza Bunge, which has been widely used in China to treat coronary heart diseases (Chang *et al.*, 1991), antitumour (Ryu *et al.*, 1997), angina pectoris and myocardial infarction (Xue *et al.*, 1999). Tanshinone IIA is also most effective and has been used as a qualitycontroller for some medicine. We report here the crystal structure (I)(Fig. 1).

The crystal structure of (I) illustrated in Fig. 1 shows that the C12—C17 ring has a twisted conformation. Also, the C4—C9 are essentially coplanar with the aromatic rings. An intermolecular C—H···O hydrogen bond links the molecules into a chain extending along the b axis. No π - π interactions are observed.

Experimental

Dried powder of Salvia miltiorrhiza Bunge was exacted with EtOH and the extract was concentrated in vacuo. The residue was subjected to silical-gel coloumn chromatography. Elution with petroleum ether-ethyl acetate (9:1v/v) yielded the title compound. The identity of (I) was confirmed by NMR spectroscopy. ¹H NMR in CDCl₃ (400 MHz):1.30 (s, 6H), 1.65 (m, 2H), 1.78 (m, 2H), 2.25(d,1.3 Hz, 3H), 3.18 (t, 6 Hz, 2H), 7.21 (q,1.3 Hz,1*H*), 7.53 (d, AB, 8 Hz,1*H*), 7.62(d, AB, 8 Hz,1*H*). ¹³C NMR in CDCl₃ (100 MHz): 8.96, 19.33, 30.01, 32.03, 34.86, 38.07, 120.11, 120.43, 121.35, 126.71, 127.66, 133.64, 141.49, 144.66, 150.35, 161.91, 175.96, 183.83.

Refinement

All H atoms were positioned geometrically and refined using a riding model, in the range of 0.95-0.98 Å, with $U_{iso}(H) = 1.2U_{eq}(carrier)$ or $U_{iso}(H) = 1.5U_{eq}(methyl C)$. The methylene groups C15 and C16, and five hydrogens H3a, H3b, H3c, H14a, H14b are found to be disordered. The molecular were located on mirror plane (the molecule has no such symmetry), so C15, C16 were disordered in two position. All the two site occupancies were refined to 0.5:0.5.

Figures

Fig. 1. A view of the molecular of (I). Displacement ellipsoids are drawn at the 30% probability level. One disorder component is shown for clarity.

1,6,6-Trimethyl-6,7,8,9-tetrahydrophenanthro[1,2-b]furan-10,11-dione

Crystal data

C₁₉H₁₈O₃ $M_r = 294.33$ Orthorhombic, *Pmna* Hall symbol: -P 2ac 2 a = 6.5579 (11) Å b = 9.1687 (15) Å c = 24.328 (4) Å V = 1462.8 (4) Å³ Z = 4 $F_{000} = 624$

Data collection

Rigaku Saturn diffractometer	1343 reflections with $I > 2\sigma(I)$
Radiation source: rotating anode	$R_{\rm int} = 0.044$
Monochromator: confocal	$\theta_{\text{max}} = 25.0^{\circ}$
T = 113(2) K	$\theta_{\min} = 2.2^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (SADABS; Sheldrick,1996)	$k = -10 \rightarrow 10$
$T_{\min} = 0.968, \ T_{\max} = 0.991$	$l = -28 \rightarrow 28$
10602 measured reflections	Standard reflections: ?
1404 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.139$

S = 1.17

1404 reflections

139 parameters

1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

 $D_x = 1.337 \text{ Mg m}^{-3}$ Melting point: 209.0-210.0 K Mo K α radiation $\lambda = 0.71070 \text{ Å}$ Cell parameters from 2823 reflections $\theta = 2.2-27.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 113 (2) KPrism, colourless $0.24 \times 0.20 \times 0.10 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0606P)^2 + 0.879P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³ Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.0000	0.8407 (3)	0.29609 (10)	0.0249 (6)	
H1	0.0000	0.9428	0.3029	0.030*	
C2	0.0000	0.7377 (3)	0.33594 (11)	0.0240 (6)	
C3	0.0000	0.7590 (3)	0.39690 (11)	0.0315 (7)	
H3A	0.0243	0.8620	0.4053	0.047*	0.50
H3B	0.1081	0.6995	0.4134	0.047*	0.50
H3C	-0.1323	0.7293	0.4119	0.047*	0.50
C4	0.0000	0.6329 (3)	0.25212 (10)	0.0194 (6)	
C5	0.0000	0.6018 (3)	0.30665 (10)	0.0200 (6)	
C6	0.0000	0.4508 (3)	0.32377 (10)	0.0210 (6)	
C7	0.0000	0.3346 (3)	0.27671 (10)	0.0202 (6)	
C8	0.0000	0.3812 (3)	0.21762 (10)	0.0189 (6)	
C9	0.0000	0.5325 (3)	0.20633 (10)	0.0184 (6)	
C10	0.0000	0.5814 (3)	0.15243 (10)	0.0221 (6)	
H10	0.0000	0.6830	0.1448	0.026*	
C11	0.0000	0.4819 (3)	0.10997 (10)	0.0243 (6)	
H11	0.0000	0.5166	0.0732	0.029*	
C12	0.0000	0.3313 (3)	0.11940 (10)	0.0221 (6)	
C13	0.0000	0.2793 (3)	0.17363 (10)	0.0195 (6)	
C14	0.0000	0.1179 (3)	0.18488 (11)	0.0353 (8)	
H14A	-0.1365	0.0861	0.1926	0.042*	0.50
H14B	0.0825	0.0981	0.2166	0.042*	0.50
C15	0.0843 (7)	0.0305 (4)	0.13403 (15)	0.0428 (12)	0.50
H15A	0.0783	-0.0727	0.1404	0.051*	0.50
H15B	0.2232	0.0575	0.1268	0.051*	0.50
C16	-0.0492 (11)	0.0744 (4)	0.08622 (15)	0.049 (3)	0.50
H16A	-0.1896	0.0678	0.0971	0.059*	0.50
H16B	-0.0278	0.0091	0.0559	0.059*	0.50
C17	0.0000	0.2317 (3)	0.06866 (11)	0.0294 (7)	
C18	0.1883 (4)	0.2607 (3)	0.03377 (9)	0.0509 (7)	
H18A	0.1895	0.1939	0.0023	0.076*	
H18B	0.3110	0.2451	0.0560	0.076*	
H18C	0.1856	0.3616	0.0205	0.076*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

01	0.0000	0.77918 (18)	0.24416 (7)	0.0236 (5)
O2	0.0000	0.4085 (2)	0.37113 (7)	0.0291 (5)
03	0.0000	0.2080 (2)	0.29159 (7)	0.0293 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0282 (15)	0.0191 (13)	0.0275 (14)	0.000	0.000	-0.0064 (11)
C2	0.0228 (14)	0.0236 (13)	0.0257 (13)	0.000	0.000	-0.0040 (11)
C3	0.0406 (18)	0.0298 (15)	0.0241 (14)	0.000	0.000	-0.0053 (12)
C4	0.0178 (13)	0.0180 (12)	0.0224 (13)	0.000	0.000	0.0002 (10)
C5	0.0171 (13)	0.0208 (14)	0.0220 (13)	0.000	0.000	-0.0002 (10)
C6	0.0180 (13)	0.0215 (13)	0.0235 (13)	0.000	0.000	-0.0014 (10)
C7	0.0162 (13)	0.0202 (14)	0.0240 (13)	0.000	0.000	0.0018 (11)
C8	0.0165 (13)	0.0189 (12)	0.0215 (13)	0.000	0.000	0.0013 (10)
C9	0.0146 (12)	0.0209 (13)	0.0198 (13)	0.000	0.000	-0.0010 (10)
C10	0.0226 (14)	0.0214 (13)	0.0222 (13)	0.000	0.000	0.0030 (11)
C11	0.0290 (15)	0.0244 (14)	0.0195 (12)	0.000	0.000	0.0008 (10)
C12	0.0219 (14)	0.0233 (13)	0.0212 (13)	0.000	0.000	-0.0028 (11)
C13	0.0177 (13)	0.0181 (13)	0.0228 (13)	0.000	0.000	-0.0011 (10)
C14	0.061 (2)	0.0192 (14)	0.0254 (14)	0.000	0.000	-0.0005 (11)
C15	0.076 (3)	0.0224 (19)	0.030 (2)	0.0069 (19)	0.001 (2)	-0.0050 (16)
C16	0.091 (9)	0.0283 (18)	0.0280 (18)	-0.015 (3)	-0.002 (2)	-0.0086 (15)
C17	0.0432 (18)	0.0248 (14)	0.0202 (13)	0.000	0.000	-0.0055 (11)
C18	0.0437 (14)	0.0737 (17)	0.0352 (12)	-0.0013 (13)	0.0074 (10)	-0.0271 (12)
01	0.0293 (11)	0.0185 (9)	0.0231 (9)	0.000	0.000	-0.0011 (7)
O2	0.0401 (12)	0.0273 (11)	0.0200 (9)	0.000	0.000	0.0029 (8)
O3	0.0413 (12)	0.0201 (10)	0.0266 (10)	0.000	0.000	0.0026 (8)

Geometric parameters (Å, °)

C1—C2	1.354 (4)	C12—C13	1.403 (3)
C1—01	1.384 (3)	C12—C17	1.535 (3)
C1—H1	0.9500	C13—C14	1.504 (4)
C2—C5	1.435 (4)	C14—C15 ⁱ	1.574 (4)
C2—C3	1.496 (4)	C14—C15	1.575 (4)
С3—НЗА	0.9800	C14—H14A	0.9600
С3—Н3В	0.9800	C14—H14B	0.9602
С3—НЗС	0.9800	C15—C15 ⁱ	1.106 (10)
C4—O1	1.355 (3)	C15—C16 ⁱ	1.252 (5)
C4—C5	1.357 (3)	C15—C16	1.511 (6)
С4—С9	1.445 (3)	C15—H15A	0.9601
С5—С6	1.445 (3)	C15—H15B	0.9600
С6—О2	1.216 (3)	C16—C16 ⁱ	0.646 (15)
С6—С7	1.564 (3)	C16—C15 ⁱ	1.252 (5)
С7—ОЗ	1.216 (3)	C16—C17	1.539 (5)
С7—С8	1.500 (3)	C16—H16A	0.9600
С8—С9	1.414 (3)	C16—H16B	0.9600

C8—C13	1.421 (4)	C17—C18	1.522 (3)
C9—C10	1.386 (3)	C17—C18 ⁱ	1.522 (3)
C10—C11	1.378 (4)	C17—C16 ⁱ	1.539 (5)
C10—H10	0.9500	C18—H18A	0.9800
C11—C12	1.399 (4)	C18—H18B	0.9800
C11—H11	0.9500	C18—H18C	0.9800
C2-C1-O1	111.7 (2)	C15—C14—H14B	109.7
C2—C1—H1	124.2	H14A—C14—H14B	108.1
O1-C1-H1	124.2	C15 ⁱ —C15—C16 ⁱ	79.4 (4)
C1—C2—C5	104.5 (2)	C15 ⁱ —C15—C16	54.6 (3)
C1—C2—C3	128.2 (2)	C16 ⁱ —C15—C16	24.9 (6)
C5—C2—C3	127.3 (2)	C15 ⁱ —C15—C14	69.43 (17)
С2—С3—НЗА	109.5	C16 ⁱ —C15—C14	120.1 (4)
С2—С3—Н3В	109.5	C16—C15—C14	105.4 (3)
НЗА—СЗ—НЗВ	109.5	C15 ⁱ —C15—H15A	87.7
С2—С3—Н3С	109.5	C16 ⁱ —C15—H15A	117.4
НЗА—СЗ—НЗС	109.5	C16—C15—H15A	111.3
НЗВ—СЗ—НЗС	109.5	C14—C15—H15A	111.1
01—C4—C5	110.3 (2)	C15 ⁱ —C15—H15B	161.6
O1—C4—C9	121.4 (2)	C16 ⁱ —C15—H15B	85.5
C5—C4—C9	128.3 (2)	C16—C15—H15B	109.9
C4—C5—C2	107.6 (2)	C14—C15—H15B	110.3
C4—C5—C6	118.9 (2)	H15A—C15—H15B	108.8
C2—C5—C6	133.5 (2)	C16 ⁱ —C16—C15 ⁱ	100.6 (4)
O2—C6—C5	125.3 (2)	C16 ⁱ —C16—C15	54.6 (3)
O2—C6—C7	118.5 (2)	C15 ⁱ —C16—C15	46.0 (4)
C5—C6—C7	116.2 (2)	C16 ⁱ —C16—C17	77.9 (3)
O3—C7—C8	123.9 (2)	C15 ⁱ —C16—C17	126.7 (3)
O3—C7—C6	115.6 (2)	C15—C16—C17	110.0 (4)
C8—C7—C6	120.5 (2)	C16 ⁱ —C16—H16A	163.5
C9—C8—C13	119.9 (2)	C15 ⁱ —C16—H16A	63.0
C9—C8—C7	117.8 (2)	C15—C16—H16A	109.1
C13—C8—C7	122.3 (2)	C17—C16—H16A	109.7
С10—С9—С8	120.1 (2)	C16 ⁱ —C16—H16B	81.6
C10—C9—C4	121.5 (2)	C15 ⁱ —C16—H16B	122.7
C8—C9—C4	118.4 (2)	C15—C16—H16B	109.9
C11—C10—C9	119.7 (2)	C17—C16—H16B	109.9
C11—C10—H10	120.2	H16A—C16—H16B	108.3
С9—С10—Н10	120.2	C18—C17—C18 ⁱ	108.5 (3)
C10-C11-C12	122.0 (2)	C18—C17—C12	110.17 (15)
С10—С11—Н11	119.0	C18 ⁱ —C17—C12	110.17 (15)
C12—C11—H11	119.0	C18—C17—C16 ⁱ	98.5 (3)
C11—C12—C13	119.3 (2)	C18 ⁱ —C17—C16 ⁱ	119.2 (3)
C11—C12—C17	117.1 (2)	C12—C17—C16 ⁱ	109.5 (2)

supplementary materials

C13—C12—C17	123.6 (2)	C18—C17—C16	119.2 (3)
C12—C13—C8	119.0 (2)	C18 ⁱ —C17—C16	98.5 (3)
C12—C13—C14	120.4 (2)	C12—C17—C16	109.5 (2)
C8—C13—C14	120.6 (2)	C16 ⁱ —C17—C16	24.2 (5)
C13—C14—C15 ⁱ	111.0 (2)	C17—C18—H18A	109.5
C13—C14—C15	111.0 (2)	C17—C18—H18B	109.5
C15 ⁱ —C14—C15	41.1 (3)	H18A—C18—H18B	109.5
C13—C14—H14A	109.5	C17—C18—H18C	109.5
C15 ⁱ —C14—H14A	70.8	H18A—C18—H18C	109.5
C15—C14—H14A	109.1	H18B—C18—H18C	109.5
C13—C14—H14B	109.4	C4—O1—C1	105.86 (19)
C15 ⁱ —C14—H14B	137.2		
O1—C1—C2—C5	0.0	C9—C8—C13—C14	180.0
O1—C1—C2—C3	180.000 (1)	C7—C8—C13—C14	0.0
O1—C4—C5—C2	0.0	C12—C13—C14—C15 ⁱ	-22.10 (19)
C9—C4—C5—C2	180.0	C8—C13—C14—C15 ⁱ	157.90 (19)
O1—C4—C5—C6	180.0	C12—C13—C14—C15	22.10 (19)
C9—C4—C5—C6	0.000(1)	C8—C13—C14—C15	-157.90 (19)
C1—C2—C5—C4	0.0	C13—C14—C15—C15 ⁱ	-98.27 (12)
C3—C2—C5—C4	180.0	C13—C14—C15—C16 ⁱ	-34.7 (6)
C1—C2—C5—C6	180.000 (1)	C15 ⁱ —C14—C15—C16 ⁱ	63.6 (5)
C3—C2—C5—C6	0.000 (1)	C13—C14—C15—C16	-56.5 (4)
C4—C5—C6—O2	180.0	C15 ⁱ —C14—C15—C16	41.8 (4)
C2—C5—C6—O2	0.000(1)	C15 ⁱ —C15—C16—C16 ⁱ	179.998 (2)
C4—C5—C6—C7	0.0	C14—C15—C16—C16 ⁱ	130.1 (3)
C2—C5—C6—C7	180.0	C16 ⁱ —C15—C16—C15 ⁱ	180.002 (1)
02—C6—C7—O3	0.0	C14—C15—C16—C15 ⁱ	-49.9 (3)
C5—C6—C7—O3	180.0	C15 ⁱ —C15—C16—C17	122.2 (4)
O2—C6—C7—C8	180.0	C16 ⁱ —C15—C16—C17	-57.8 (4)
C5—C6—C7—C8	0.0	C14—C15—C16—C17	72.2 (4)
O3—C7—C8—C9	180.0	C11—C12—C17—C18	59.82 (17)
C6—C7—C8—C9	0.0	C13—C12—C17—C18	-120.18 (17)
O3—C7—C8—C13	0.0	C11—C12—C17—C18 ⁱ	-59.82 (17)
C6—C7—C8—C13	180.0	C13—C12—C17—C18 ⁱ	120.18 (17)
C13—C8—C9—C10	0.0	C11—C12—C17—C16 ⁱ	167.1 (3)
C7—C8—C9—C10	180.0	C13—C12—C17—C16 ⁱ	-12.9 (3)
C13—C8—C9—C4	180.0	C11—C12—C17—C16	-167.1 (3)
C7—C8—C9—C4	0.0	C13—C12—C17—C16	12.9 (3)
O1—C4—C9—C10	0.0	C16 ⁱ —C16—C17—C18	33.80 (18)
C5—C4—C9—C10	180.0	C15 ⁱ —C16—C17—C18	128.1 (6)
01—C4—C9—C8	180.0	C15-C16-C17-C18	78.6 (4)
С5—С4—С9—С8	0.0	C16 ⁱ —C16—C17—C18 ⁱ	150.60 (15)
C8—C9—C10—C11	0.0	C15 ⁱ —C16—C17—C18 ⁱ	-115.1 (7)

C4—C9—C10—C11	180.0	C15—C16—C17—C18 ⁱ	-164.6 (3)
C9—C10—C11—C12	0.0	C16 ⁱ —C16—C17—C12	-94.37 (11)
C10-C11-C12-C13	0.0	C15 ⁱ —C16—C17—C12	-0.1 (8)
C10-C11-C12-C17	180.0	C15—C16—C17—C12	-49.5 (4)
C11—C12—C13—C8	0.0	C15 ⁱ —C16—C17—C16 ⁱ	94.3 (7)
C17—C12—C13—C8	180.0	C15—C16—C17—C16 ⁱ	44.8 (4)
C11—C12—C13—C14	180.0	C5—C4—O1—C1	0.0
C17—C12—C13—C14	0.0	C9—C4—O1—C1	180.0
C9—C8—C13—C12	0.0	C2-C1-O1-C4	0.0
C7—C8—C13—C12	180.0		
Symmetry codes: (i) $-x$, y , z .			

